Inertia elements versus Frobenius elements

نویسنده

  • FLORIAN POP
چکیده

Theorem (Generalized Dirichlet Density). Let f : Y → X be a generically finite and Galois morphism of integral separated schemes of finite type over Z. Let K and L denote the function fields of X, respectively Y , and let G := Gal(L|K) be the group of (rational) automorphisms of Y over X. Then the following hold: 1) There exists an open sub-scheme U ⊂ X such that f is étale above U , and if V = f−1(U), then V is an open sub-scheme of Y , and f : V → V is an étale cover.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Operators and an Inertia Theorem

In recent years there has been interest in a theorem on positive definite matrices known as Lyapunov's theorem. Several authors have proved generalizations of this theorem, (WIELANDT [29J, TAUSSKY [24J, [25J, [26J , OSTROWSKISCHNEIDER [20J, GIVENS [10J, CARLSON-SCHNEIDER [3J, CARLSON [4J) . Lyapunov's theorem and its generalizations have become known as inertia theorems. In this note we shall u...

متن کامل

A Characterization of the Suzuki Groups by Order and the Largest Elements Order

One of the important problems in group theory is characterization of a group by a given property, that is, to prove there exist only one group with a given property. Let  be a finite group. We denote by  the largest order of elements of . In this paper, we prove that some Suzuki groups are characterizable by order and the largest order of elements. In fact, we prove that if  is a group with  an...

متن کامل

Bounds for Test Exponents

Suppose that R is a two-dimensional normal standard-graded domain over a finite field. We prove that there exists a uniform Frobenius test exponent b for the class of homogeneous ideals in R generated by at most n elements. This means that for every ideal I in this class we have that f b ∈ I [p ] if and only if f ∈ I . This gives in particular a finite test for the Frobenius closure. On the oth...

متن کامل

UvA - DARE ( Digital Academic Repository ) Frobenius distributions for real quadratic orders

We present a density result for the norm of the fundamental unit in a real quadratic order that follows from an equidistribution assump tion for the in nite Frobenius elements in the class groups of these orders

متن کامل

Frobenius distributions for real quadratic orders

We present a density result for the norm of the fundamental unit in a real quadratic order that follows from an equidistribution assumption for the infinite Frobenius elements in the class groups of these orders.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007